
Smart Fuzzing of 5G Wireless Software
Implementation

Huan Wu1, Brian Fang2 ⋆, and Fei Xie1

1 Portland State University, Portland, OR 97201
2 University of Pittsburgh, Pittsburgh, PA 15260

Abstract. In this paper, we introduce a comprehensive approach to
bolstering the security, reliability, and comprehensibility of OpenAirIn-
terface5G (OAI5G), an open-source software framework for the explo-
ration, development, and testing of 5G wireless communication systems.
Firstly, we employ AFL++, a powerful fuzzing tool, to fuzzy-test OAI5G
with respect to its configuration files rigorously. This extensive testing
process helps identify errors, defects, and security vulnerabilities that
may evade conventional testing methods. Secondly, we harness the ca-
pabilities of Large Language Models such as Google Bard to automat-
ically decipher and document the meanings of parameters within the
OAI5G codebase that are used in fuzzing. This automated parameter
interpretation streamlines subsequent analyses and facilitates more in-
formed decision-making. Together, these two techniques contribute to
fortifying the OAI5G system, making it more robust, secure, and under-
standable for developers and analysts alike.

1 Introduction

OpenAirInterface5G (OAI5G) [6] is an open-source framework designed to fa-
cilitate the exploration, development, and testing of 5G wireless communica-
tion technologies. This comprehensive platform fully implements the 5G proto-
col stack, encompassing critical radio access network components, including the
physical layer, medium access control layer, radio resource control (RRC) layer,
and core network elements. By harnessing the power of software-defined radios,
OAI5G delivers flexibility for customization and real-world testing, empowering
researchers, developers, and educators to immerse themselves in the intricacies
of 5G networks. However, as the system’s complexity grows, so do the potential
vulnerabilities and defects that can undermine its reliability, stability, and secu-
rity. Therefore, there is an urgent need for effective testing methods to detect
and rectify these issues proactively.

Fuzzing [8][7] is a software testing approach used to detect errors, defects, and
security vulnerabilities in a software program or system by subjecting it to an ex-
tensive number of unexpected, malformed or random inputs. Leveraging fuzzing
to evaluate OAI5G configuration files provides several advantages. It reveals vul-
nerabilities such as buffer overflows, memory leaks, and other security concerns
⋆ This work was done during an internship at Portland State University.

ar
X

iv
:2

30
9.

12
99

4v
1

 [
cs

.S
E

]
 2

2
Se

p
20

23

2 H. Wu et al.

triggered by unconventional or malformed configuration inputs. Additionally, it
explores a broad spectrum of inputs, including edge cases and unconventional
configurations, exposing issues that may manifest only under specific conditions.
Fuzzing also automatically generates an extensive array of configuration inputs
to ensure comprehensive coverage of possible scenarios and configurations, en-
hancing the OAI5G system’s overall robustness. Among various fuzzing tools,
AFL++ [3] stands out as a top choice, being an enhanced version of the original
American Fuzzy Lop (AFL) [12] fuzzing tool. AFL++ builds upon AFL’s success
with optimizations for faster test case generation and coverage measurement,
diverse mutator strategies for wider test case variation, increased stability, and
robustness.

Given the complex nature of the OAI5G codebase, which encompasses a
multitude of parameters, some of these parameters can be challenging for devel-
opers and researchers to fully understand within the context of the 5G network
framework. Fortunately, advancements in AI technology [10] have opened new
avenues for interpreting these parameters. Large Language models (LLMs), such
as ChatGPT from OpenAI [9] and Bard from Google AI [4], emerge as a promis-
ing solution. With advanced language capabilities and extensive training in text
and code, LLMs excel in interpreting OAI5G parameters. Leveraging their nat-
ural language understanding, LLMs elucidate complex parameter meanings, en-
hancing accessibility and comprehension for OAI5G developers and researchers.

This paper presents a comprehensive approach that leverages advanced test-
ing techniques and AI-driven tools to enhance the OAI5G system’s security,
reliability, and comprehensibility, ultimately contributing to its robustness and
accessibility. It presents two essential techniques: leveraging AFL++ for com-
prehensively fuzzing OAI5G’s configuration files and harnessing Google Bard’s
API for automated parameter interpretation within the OAI5G codebase. These
methods collectively enhance OAI5G’s resilience, making it more secure and
user-friendly, and have significant potential in the broader context of 5G net-
work development.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the 5G New Radio and AFL++. Section 3 outlines the methodology
of our approach. Section 4 discusses the implementation details of our approach.
Finally, Section 5 concludes the paper and outlines future research directions.

2 Background

2.1 5G New Radio

The 3GPP (3rd Generation Partnership Project) 5G New Radio (NR) architec-
ture [2] encompasses both the radio access network and the core network, each
with distinct functionalities. Within the 5G NR radio access network, various
key components collaborate to provide wireless connectivity to user devices. At
the heart of the RAN lies the Next-Generation NodeB (gNB), tasked with radio
resource control, physical layer management, and radio protocol handling. The

Smart Fuzzing of 5G Wireless Software Implementation 3

gNB establishes communication with user equipment (UE) and other gNBs as
necessary. On the other hand, the 5G NR core network is designed for flexibil-
ity, scalability, and versatile support for numerous services and applications. It
adopts service-based architecture principles, enabling capabilities such as net-
work slicing and efficient resource allocation.

The communication process in a 5G NR network, involving the UE, the gNB,
and the core network, encompasses several steps for connection establishment
and maintenance. As depicted in Figure 1, this process unfolds as follows: (1)
RRC Connection Request: The initiation phase involves the UE dispatching a
request to the gNB, signaling its intent to establish communication. (2) RRC
Connection Setup: In response to the request, the gNB configures communication
parameters. (3) RRC Connection Setup Complete: The UE confirms the success-

Fig. 1. 5G NR Network Connection Process

ful setup.(4) Initial UE Message: The gNB informs the core network, initiating
subsequent actions. (5) Initial UE Context Setup Request: The core network
initiates preparations with a request to the gNB. (6) RRC Security Mode Com-
mand: The gNB sends a security mode command to the UE to ensure security.
(7) RRC Security Mode Complete: The UE acknowledges security readiness. (8)
RRC Connection Reconfiguration: The gNB adjusts communication as needed.
(9) RRC Connection Reconfiguration Complete: The UE confirms seamless ad-
justments. (10) Initial UE Context Setup Response: The gNB finalizes the UE’s
context within the network, ensuring a stable and secure connection.

In the communication process of a 5G NR network, the gNB’s role in config-
uring communication parameters is crucial for establishing a robust and efficient
connection. These parameters encompass vital communication aspects like fre-
quency bands, modulation schemes, and coding rates. Proper configuration by
the gNB ensures optimized performance and reliability in the communication
between the UE and the core network.

4 H. Wu et al.

2.2 AFL++

AFL++ is a powerful and indispensable fuzzing tool in software security and vul-
nerability discovery. It builds upon AFL by incorporating cutting-edge research
and enhancements, extending its capabilities with additional power schedules,
and offering an evolving API that eliminates the need for forking or patching. It
features the Custom Mutator API for customized fuzzing processes and target-
specific mutators. Supporting multiple instrumentation backends (LLVM, GCC,
QEMU, Unicorn, QBDI), it provides a flexible proxy module for forwarding
test cases. Compatible with various operating systems and distributions, AFL++
includes optimizations like a Linux Kernel Module inspired by Perffuzz [11], sig-
nificantly boosting performance, especially in parallel fuzzing, without requiring
target program recompilation.

3 Method

In this section, we outline the core techniques that constitute our approach
to fortifying the OAI5G system. These techniques cover comprehensive fuzzing
of OAI5G’s configuration files and the automated interpretation of parameters
within the OAI5G codebase. The following details provide essential insights into
bolstering the overall robustness of OAI5G.

3.1 Fuzzing With AFL++

This section demonstrates the systematic approach employed to leverage AFL++
for the fuzzing of OAI5G. Figure 2 provides a comprehensive overview of this ap-
proach. It starts with a critical adaptation: the substitution of the conventional
GCC compiler in the OAI5G codebase with AFL++’s afl-clang-fast compiler,
primarily for instrumentation purposes. This choice is grounded in several rea-
sons. Firstly, afl-clang-fast is based on the LLVM infrastructure, known for its
reliability and widespread usage in compiler technology. Additionally, it offers a
notable speed advantage over alternative compilers, making it highly efficient for
large-scale codebases such as OAI5G. These efficiencies translate into reduced
overhead during instrumentation. Furthermore, afl-clang-fast incorporates opti-
mizations tailored for precise code instrumentation, enhancing our fuzz testing
capabilities.

Following the instrumentation of the OAI5G target, the subsequent signif-
icant step entails the strategy implementation of AFL++’s afl-fuzz. This im-
plementation is geared toward conducting comprehensive fuzzing of OAI5G by
exploring its configuration parameters. This phase is specifically dedicated to
systematically assessing the parameters within the structured configuration file
used as input by the gNB. To handle the structures of the configuration file,
we craft a corresponding grammar file. AFL++ introduces a powerful grammar
mutator inspired by the principles of the F1 fuzzer [5] and Nautilus [1], signif-
icantly enhancing its ability to manipulate structured input formats like JSON

Smart Fuzzing of 5G Wireless Software Implementation 5

Fig. 2. AFL++ Testing Procedure

and Ruby. This augmentation makes AFL++ a versatile tool for thorough and
methodical fuzzing. By generating a diverse spectrum of input variations, we sys-
tematically scrutinize the configuration files for potential vulnerabilities, unique
scenarios, and unforeseen anomalies.

3.2 Automated Parameter Interpretation

Leveraging Bard’s potential to automatically generate interpretations for OAI5G
codebase parameters is another essential component for our smart fuzzing. We
develop an algorithm to preprocess input parameters and facilitate the auto-
mated interpretation of complex ones.

This algorithm, showcased in Algorithm 1, demonstrates the extraction and
analysis of test case parameters, their variable names, and their meanings within
the OAI5G source code. It starts by parsing an input file to identify test cases
and storing them in an ArrayList. Subsequently, it processes these test cases to
isolate unique parameters and their associated value ranges, managing this data
within a LinkedHashMap. Following this, it proceeds to locate the correspond-
ing variable names for these parameters, employs the Bard API to retrieve their
meanings within the OAI5G source code, and constructs result strings that en-
compass parameter details, variable names, and meanings. Lastly, these results
are systematically written to an output file.

By seamlessly combining Algorithm 1 with our comprehensive fuzzing ap-
proach, we streamline and enhance the procedure for automating the generation
of meanings for OAI5G parameters. This tool empowers us to better understand

6 H. Wu et al.

these elements within the OAI5G codebase, associating them seamlessly with
our fuzzing strategies and fortifying the OAI5G system.

Algorithm 1 AutoExplainParams(input, output)
1: tests = ArrayList()
2: for line in readLines(input) do
3: if isTest(line) then
4: tests.add(line)
5: paramsMap = LinkedHashMap()
6: for test in tests do
7: uniqueParams = extractUniqueParams(test)
8: for param in uniqueParams do
9: params.put(param, getParamRange(param)

10: results = ArrayList()
11: for param in params do
12: varName = findParamName(param)
13: varMeaning = callingBardAPI(varName)
14: result = "-" + param + " (" + varName + ") -> " + varMeaning
15: results.add(result)
16: writeLines(output, results)

4 Implementation

This section expands on the implementation details of our approach. It cov-
ers the execution of comprehensive fuzzing using AFL++ and the integration of
automated parameter explanation techniques for OAI5G parameters.

4.1 Execution of Fuzzing

We first discuss the implementation of fuzz testing with AFL++ using OAI5G’s
configuration files. We initiate the fuzz testing process using a sample configu-
ration file from OAI5G as the seed input, as depicted in Figure 3. This figure
shows the extraction of select parameters and their respective values from the
configuration file. To align with AFL++’s grammar mutator, we provide a cor-
responding grammar file for the configuration file, represented in Figure 4. This
JSON-formatted grammar file comprises key-value pairs, where each key in-
cludes a grammar token enclosed within angle brackets and the associated value
consisting of grammar rules in the form of string lists. These rules can repre-
sent either concrete strings or references to other grammar tokens. Leveraging
this provided grammar, the grammar mutator constructs a tree-like structure
for each input test case, which is subsequently translated into a concrete input
format compatible with the target application.

Given the extensive scale of the OAI5G codebase, a strategic consideration
pertains to adjusting the timeout period to "10000+" milliseconds for the forth-
coming implementation of AFL++’s afl-fuzz. This elongated timeout duration

Smart Fuzzing of 5G Wireless Software Implementation 7

gNBs = ({
......
do_CSIRS = 1;
do_SRS = 1;
pdcch_ConfigSIB1 = ({
controlResourceSetZero = 12;
searchSpaceZero = 0;});
servingCellConfigCommon = ({
......
absoluteFrequencySSB = 641280;
dl_frequencyBand = 78;
dl_absoluteFrequencyPointA = 640008;
dl_offstToCarrier = 0;
dl_carrierBandwidth = 106;
......})
......})

Fig. 3. Sample Configuration File

{......
"<26>": [["do_CSIRS = ", "<27>", ";\n"]],
"<27>": [["1"], ["0"]],
"<28>": [["do_SRS = ", "<29>", ";\n"]],
"<29>": [["1"], ["0"]],
"<30>": [["pdcch_ConfigSIB1 = (\n{\n", "<31>", "<33>", "}\n);\n"]],
"<31>": [["controlResourceSetZero = ", "<32>", ";\n"]],
"<32>": [["3"],["4"],["5"],["6"],["7"],["8"],["9"],["10"],["11"],["12"]],
"<33>": [["searchSpaceZero = ", "<34>", ";\n"]],
"<34>": [["0"],["1"],["2"],["3"],["4"],["5"],["6"],["7"],["8"],["9"]],
......
"<38>": [["absoluteFrequencySSB = ", "<39>", ";\n"]],
"<39>": [["641280"],["641272"],["433096"],["642016"],["623232"]],
"<40>": [["dl_frequencyBand = ", "<41>", ";\n"]],
"<41>": [["78"],["41"],["66"],["257"],["261"]],
"<42>": [["dl_absoluteFrequencyPointA = ", "<43>", ";\n"]],
"<43>": [["640008"],["43000"],["623336"],["640032"],["620016"]],
......
"<48>": [["dl_carrierBandwidth = ", "<49>", ";\n"]],
"<49>": [["24"],["25"],["66"],["106"],["133"],["162"],["217"],["273"]],
......}

Fig. 4. Sample Grammar File

accounts for the intricate nature of the OAI5G codebase and aligns to scrutinize
the configuration parameters embedded within the configuration file thoroughly.
By extending the timeout to this duration, we aim to ensure that the fuzzing

8 H. Wu et al.

process extensively explores many potential code paths and test scenarios, en-
abling the effective identification of vulnerabilities, exceptional conditions, and
unanticipated behaviors within the OAI5G ecosystem.

Table 1. Sample Crash Test Cases

Parameters Initial Case1 Case2 Case3 Case4 Case5
do_CSIRS 1 0 0 0 0 1
do_SRS 1 0 0 0 1 1
controlResourceSetZero 12 9 3 9 6 12
searchSpaceZero 0 9 8 9 8 0
absoluteFrequencySSB 641280 433096 641272 642016 623232 641280
dl_frequencyBand 78 78 78 41 78 257
dl_absoluteFrequencyPointA 640008 640008 43000 43000 43000 640008
dl_carrierBandwidth 106 106 25 25 24 106

Through the fuzzing process, several crash cases are identified, and a selec-
tion of these cases is presented in Table 1. Notably, common patterns among
these crashes illuminate specific inputs or configurations prone to issues, guiding
focused improvement efforts. Additionally, evaluating the severity and impact of
each crash has enabled a more efficient prioritization of debugging and enhance-
ment tasks. These cases also serve as valuable practical examples for documen-
tation and reference, fostering improved comprehension of problems and their
solutions.

4.2 Auto-Explaining Parameters Integration

As an example, we employ the physical layer test cases and parameters embedded
within the OAI5G codebase to exemplify the utilization of Bard for automated
parameter interpretation. Figure 5 presents a snapshot of the input file extracted
from the log generated during the execution of the PBCH-related physical layer
test cases in OAI5G’s autotests. This example encompasses seven distinct use
cases, each featuring seven unique sets of input parameter combinations. We aim
for Bard to explain each parameter’s meaning in this context.

As outlined in Algorithm 1 within Section 2.3, Figure 6 illustrates the process
wherein each test case is organized as a Test Object, preserving their respective
test names and parameters as inherent properties. It proceeds to iterate through
this ArrayList, establishing a LinkedHashMap for every test case to create a
mapping between parameter names and a LinkedHashSet encompassing param-
eter values. For each parameter, a search operation is performed within the
corresponding test case file to recover the associated variable name. Figure 7
further elucidates the architecture of individual test cases within the ArrayList.
Each case is structured as a LinkedHashMap, featuring a parameter name as a
key, complemented by a LinkedHashSet that encapsulates the associated range

Smart Fuzzing of 5G Wireless Software Implementation 9

Description = nr_pbchsim Test cases.
(Test1: PBCH-only, 106 PRB),
(Test2: PBCH and synchronization, 106PBR),
(Test3: PBCH-only, 217 PRB),
(Test4: PBCH and synchronization, 217 RPB),
(Test5: PBCH-only, 273 PRB),
(Test6: PBCH and synchronization, 273 PRB),
(Test7: PBCH and synchronization, 106PBR, SSB SC OFFSET 6)

main_exec_args = -s-11 -S-8 -n10 -R106
-s-11 -S-8 -n10 -o8000 -I -R106
-s-11 -S-8 -n10 -R217
-s-11 -S-8 -n10 -o8000 -I -R217
-s-11 -S-8 -n10 -R273
-s-11 -S-8 -n10 -o8000 -I -R273
-s-11 -S-8 -n10 -R106 -O6

Fig. 5. Sample Input File

Fig. 6. Test Case Storage

of values. The algorithm subsequently queries the relevant files to determine the
complete variable name corresponding to each parameter.

With these preparations complete, the algorithm leverages Bard’s API to
access the definitions of these variable names within OAI5G. Finally, it generates
an output file with crucial information such as the test case name, variable
names, meanings, and the respective range of values. These details are in a
structured format, exemplified in Figure 8, which displays this comprehensive
information for the PBCH-related test case.

The described systematic process, facilitated by Bard’s API, clarifies the
significance of vital parameters in the OAI5G codebase and simplifies follow-
up analyses. This understanding empowers developers and analysts to make
informed decisions, uncover optimizations, and bolster the overall efficiency and
reliability of the OAI5G system.

10 H. Wu et al.

Fig. 7. Test Case Structure

nr_pbchsim
-s (snr0) -> Initial Signal-to-Noise Ratio (SNR) for PBCH (Physical

Broadcast Channel) simulation: -11
-S (snr1) -> Additional Signal-to-Noise Ratio (SNR) for PBCH simulation:

-8
-n (n_trials) -> Number of PBCH simulation trials: 10
-R (N_RB_DL) -> Number of resource blocks for downlink: 106, 217, 273
-o (cfo) -> Carrier Frequency Offset (CFO) value for PBCH simulation:

8000
-I (run_initial_sync) -> Run initial synchronization
-O (ssb_subcarrier_offset) -> Subcarrier offset for Synchronization

Signal Blocks (SSBs): 6

Fig. 8. Test Case Output

5 Conclusions and Future Work

This study presents a holistic approach to enhance the security, reliability, and
comprehensibility of the OAI5G system through smart fuzzing. Two core tech-
niques underpin this strategy. Firstly, we employ AFL++ to meticulously evaluate
OAI5G’s configuration files. This rigorous testing reveals vulnerabilities, defects,
and security weaknesses often missed by conventional methods. Secondly, Google
Bard’s API automates the interpretation and documentation of parameters in
the OAI5G codebase, streamlining subsequent analyses and enabling informed
decisions. These combined efforts strengthen the OAI5G system, benefiting de-
velopers and analysts alike. Looking ahead, avenues for research and development
include extending our fuzzing approach to critical components, like parameters
influencing the communication between gNB and UE. Leveraging AI technologies
like Google Bard and ChatGPT also holds promise, offering insights, recommen-
dations, and automation for enhanced testing and analysis.

Smart Fuzzing of 5G Wireless Software Implementation 11

References

1. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.R., Teuchert, D.:
Nautilus: Fishing for deep bugs with grammars. In: NDSS (2019)

2. Etsi ts 138 401: 5g; ng-ran; architecture description
3. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: {AFL++}: Combining incremental

steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
(WOOT 20) (2020)

4. Google Bard: A Large Language Model for Research and Creative Writing (2023),
https://bard.google.com

5. Gopinath, R., Zeller, A.: Building fast fuzzers. arXiv preprint arXiv:1911.07707
(2019)

6. Kaltenberger, F., De Souza, G., Knopp, R., Wang, H.: The openairinterface 5g new
radio implementation: Current status and roadmap. In: WSA 2019; 23rd Interna-
tional ITG Workshop on Smart Antennas. pp. 1–5. VDE (2019)

7. Manès, V.J., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.: The
art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software
Engineering 47(11), 2312–2331 (2019)

8. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. Communications of the ACM 33(12), 32–44 (1990)

9. OpenAI: Introducing ChatGPT, https://openai.com/blog/chatgpt
10. Ram, B., Pratima Verma, P.V.: Artificial intelligence ai-based chatbot study of

chatgpt, google ai bard and baidu ai. World Journal of Advanced Engineering
Technology and Sciences 8(01), 258–261 (2023)

11. Xu, W., Kashyap, S., Min, C., Kim, T.: Designing new operating primitives to
improve fuzzing performance. In: Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security. pp. 2313–2328 (2017)

12. Zalewski, M.: American fuzzy lop -whitepaper. (2016), https://lcamtuf.
coredump.cx/afl/technical_details.txt

https://bard.google.com
https://openai.com/blog/chatgpt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Smart Fuzzing of 5G Wireless Software Implementation

