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Abstract

We give a deterministic, big-step operational semantics for the essential core of
the Curry language, including higher-order functions, call-by-need evaluation, non-
determinism, narrowing, and residuation. The semantics is structured in modular
monadic style, and is presented in the form of an executable interpreter written in
Haskell. It uses monadic formulations of state, non-determinism, and resumption-
based concurrency.
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1 Introduction

The functional logic language Curry combines lazy functional programming
with logic programming features based on both narrowing and residuation.
Describing the semantics of these features and their interaction in a common
framework is a non-trivial task, especially because functional and logic pro-
gramming have rather different semantic traditions. The “official” semantics
for Curry [4], largely based on work by Hanus [6,5], is an operational seman-
tics based on definitional trees and narrowing steps. Although fairly low-level,
this semantics says nothing about sharing behavior. Functional languages
are typically given denotational or natural (“big step”) operational seman-
tics. In more recent work [1], Albert, Hanus, Huch, Oliver, and Vidal propose
a natural semantics, incorporating sharing, for the first-order functional and
narrowing aspects of Curry; however, in order to collect all solutions of non-
deterministic programs and to incorporate residuation, they fall back on a
small-step semantics. While small-step semantics have the advantage of being
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data Exp = Var Var type Var = String
Int Int type Constr = String
Abs Var Exp type Prim = String
App Exp Exp type Pattern = (Constr, [Var])

Primapp Prim Exp Exp
Case Exp [(Pattern,Exp)]

|
|
|
| Capp Constr [Exp]
|
|
| Letrec [(Var,Exp)] Exp

Fig. 1. Expressions.

closer to usable abstract machines, they tend to be lower-level than big-step
models, and perhaps harder to reason about.

In this paper, we describe a variant of the semantics by Albert, et al.
that remains big-step, but delivers all solutions of non-deterministic programs
and handles residuation. It is also fully higher-order. Our treatment is not
especially original; rather, we have attempted to apply a variety of existing
techniques to produce a simple and executable semantic interpreter. In par-
ticular, we follow Seres, Spivey, and Hoare [17] in recording multiple solutions
to non-deterministic programs in a lazily constructed forest, which can be
traversed in a variety of orders to ensure fair access to all solutions. We use
resumptions [16, Ch. 12] to model the concurrency needed to support resid-
uation. We organize the interpreter using monads in the style popularized
by Wadler [19], which allows a modular presentation of non-determinism [7,3]
and concurrency. We believe that the resulting semantics will be useful for
understanding Curry and exploring language design alternatives. It may also
prove useful as a stepping stone towards new practical implementations of the
language.

Our semantics is defined as an executable interpreter, written in Haskell,
for a core subset of Curry. We present the interpreter in three phases. Section 2
describes the evaluation of the functional subset of the language. Section 3
introduces non-determinism, logic variables, and narrowing. Section 4 adds
residuation. Section 5 offers brief conclusions. The reader is assumed to be
familiar with Haskell and with monads.

2 The Functional Language Interpreter

The abstract syntax for the functional part of our core expression language
is given as a Haskell data type definition in Figure 1. The language is not
explicitly typed, but we assume throughout that we are dealing with typeable
expressions. Function abstractions (Abs) have exactly one argument; multiple-
argument functions are treated as nested abstractions. Functions need not be
lambda-lifted to top level. For simplicity, the only primitive type is integers
(Int) and all primitive operators are binary; these limitations could be easily
lifted. Primitive operators, which are named by strings, act only on con-
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structor head-normal forms. Each constructor is named by a string ¢, and is
assumed to have a fixed arity ar(c) > 0. Constructors can be invented freely
as needed; we assume that at least the nullary constructors True, False, and
Success are available.

Constructor applications (Capp) and patterns (within Case expressions)
and primitive applications (Primapp) are fully applied. Unapplied or par-
tially applied constructors and primitives in the source program must be 7-
expanded. Case expressions analyze constructed values. Patterns are “shal-
low;” they consist of a constructor name ¢ and a list of ar(c) variables. The
patterns for a single Case are assumed to be mutually exclusive, but not neces-
sarily exhaustive. More complicated pattern matching in the source language
must be mapped to nested Case expressions. Such nested case expressions can
be used to encode definitional trees [2]. Finally, Letrec expressions introduce
sets of (potentially) mutually recursive bindings.

Curry is intended to use “lazy” or, more properly, call-by-need evalua-
tion, as opposed to simple call-by-name evaluation (without sharing). Al-
though the results of call-by-name and call-by-need cannot be distinguished for
purely functional computations, the time and space behavior of the two strate-
gies are very different. More essentially, the introduction of non-determinism
(Section 3) makes the difference between strategies observable. We therefore
model call-by-need evaluation explicitly using a mutable heap to represent
shared values. (The heap is also used to represent recursion without recourse
to a Y-combinator.) This approach corresponds to the behavior of most real
implementations of call-by-need languages; its use in formal semantics was
introduced by Launchbury [11] and elaborated by Sestoft [18], and was also
adopted by Albert, et al. [1].

Following a very old tradition [10], we interpret expressions in the con-
text of an enwvironment that maps variables to heap locations, rather than
performing substitution on expressions. The same expression (e.g., the body
of an abstraction) can therefore evaluate to different values depending on the
values of its free variables (e.g., the abstraction parameter). In this approach
we view the program as immutable code rather than as a term in a rewriting
system.

The main evaluation function is

eval :: Env -> Exp -> M Value

which evaluates an expression in the specified environment and returns the
corresponding constructor head-normal form (HNF) value, embedded in a
monadic computation. The monad

newtype M a = M (Heap -> A (a,Heap))

represents stateful computations on heaps. Type A a is another monad, rep-
resenting answers involving type a.

The key type definitions, shown in Figure 2, are mutually recursive. Values
correspond to HNFs of expressions. Constructed values (VCapp) correspond
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type HPtr = Int
data Value =
VCapp Constr [HPtr]
| VInt Int
| VAbs Env Var Exp
type Env = Map Var HPtr
data Heap = Heap {free :: [HPtr], bindings :: Map HPtr HEntry}
data HEntry =
HValue Value
| HThunk Env Exp
| HBlackhole

Fig. 2. Key data types for evaluation.

data Map a b = Map [(a,b)]

mempty :: Map a b

mempty = Map []

mget :: EQq a =>Map ab =>a->b
mget (Map 1) k = fromJust (lookup k 1)
mset :: Map a b -> (a,b) -> Map a b
mset (Map 1) (k,d) = Map ((k,d):1)

Fig. 3. A specification for the Map ADT. Note that the ordering of the list guarantees
that each mset of a given key supersedes any previous mset for that key. An efficient
implementation would use a sorted tree or hash table (and hence would put stronger
demands on the class of a).

to constructor applications; the components of the value are described by
pointers into the heap (HPtr). Closures (VAbs) correspond to abstraction
expressions, tagged with an explicit environment to resolve variable references
in the abstraction body. Environments and values are only well-defined in
conjunction with a particular heap that contains bindings for the heap pointers
they mention.

A heap is a map bindings from heap pointers (HPtr) to heap entries
(HEntry), together with a supply free of available heap pointers. Heap
entries are either HNF values, unevaluated expressions (HThunk), or “black
holes” (HBlackhole). We expect thunk entries to be overwritten with value
entries as evaluation proceeds. Black holes are used to temporarily overwrite
a heap entry while a thunk for that entry is being computed; attempting to
read a black-hole value signals (one kind of) infinite recursion in the thunk
definition [8,18].

Both Env and Heap rely on an underlying abstract data type Map a b of
applicative finite maps from a to b, supporting simple get and set operations
(see Figure 3). Note that mset returns a new map, rather than modifying an
existing one. It is assumed that mget always succeeds. The map operations
are lifted to the bindings component of heaps as hempty, hget, and hset.
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newtype M a = M (Heap -> A (a,Heap))
instance Monad M where
(M m1) >=k =M (\h -> do (a’,h’) <-ml h
let Mm2 = k a’ in m2 h’)
return x = M (\h -> return (x,h))
instance MonadPlus M where
mzero = M (\_ -> mzero)
(M m1) ‘mplus‘ (M m2) =M (\h -> ml1 h ‘mplus‘ m2 h)
fresh :: M HPtr
fresh = M (\h -> return (hfresh h))
store :: HPtr -> HEntry -> M ()
store p e = M (\h -> return ((),hset h (p,e)))
fetch :: HPtr -> M HEntry
fetch x = M (\h -> return (hget h x,h))
run :: M a -> A (a,Heap)
run (M m) = m hempty

Fig. 4. The evaluation monad.

The function
hfresh :: Heap -> (HPtr,Heap)

picks and returns a fresh heap pointer. As evaluation progresses, the heap
can only grow; there is no form of garbage collection. We also don’t perform
environment trimming [18], though this would be easy to add.

The evaluation function returns a monadic computation M Value, which
in turn uses the answer monad A. Using monads allows us to keep the code for
eval simple, while supporting increasingly sophisticated semantic domains.
Our initial definition for M is given in Figure 4. Note that M is essentially just
a function type used to represent computations on heaps.® The “current” heap
is passed in as the function argument, and a (possibly updated) copy is re-
turned as part of the function result. As usual, bind (>>=) operations represent
sequencing of computations; return injects a value into the monad without
changing the heap; mzero represents a failed evaluation; mplus represents al-
ternative evaluations (which will be used in Section 3). The monad-specific
operations include fresh, which returns a fresh heap location; fetch, which
returns the value bound to a pointer (assumed valid) in the current heap:;
and store, which extends or updates the current heap with a binding. The
function run executes a computation starting from the empty heap.

Type A is also a monad, representing answers. Note that the uses of bind,
return, mzero and mplus in the bodies of the functions defined on M are actu-
ally the monad operators for A (not recursive calls to the M monad operators!).
In this section, we equate A with the exception monad Maybe a, so that an

3 We introduce the newtype and “wrapper” data constructor M only so that we can make M
an instance of the Monad class, which allows us to use Haskell’s “do notation” for sequences
of bind operations.
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instance Monad Maybe where instance MonadPlus Maybe where
Just x >>=k =k x mzero = Nothing
Nothing >>= k = Nothing
return = Just

Fig. 5. The Maybe type as a monad.

answer is either Just a pair (HNF value,heap) or Nothing, representing “fail-
ure.” Failure occurs only when a required arm is missing from a non-exhaustive
Case expression, or when an attempt is made to fetch from a black-holed heap
location. A gets instance definitions of >>=, return, and mzero for Maybe from
the standard library (Figure 5). Note that (>>=) propagates failure.

With this machinery in place, the actual eval function is quite short (Fig-
ure 6). Evaluation of expressions already in HNF is trivial, except for con-
structor applications, for which each argument expression must be allocated
as a separate thunk (since it might be shared). Evaluation of applications is
also simple. Assuming that the program is well-typed, the operator expression
must evaluate to an abstraction. The argument expression is allocated as a
thunk and bound to the formal parameter of the abstraction; the body of the
abstraction is evaluated in the resulting environment.

Letrec bindings just result in thunk allocations for the right-hand sides.
To make the bindings properly recursive, all the thunks share the same envi-
ronment, to which all the bound variables have been added.

The key memoization step required by call-by-need occurs when evaluating
a Var expression. In a well-typed program, each variable must be in the
domain of the current environment. The corresponding heap entry is fetched:
if this is already in HNF, it is simply returned. If it is a thunk, it is recursively
evaluated (to HNF), and the resulting value is written over the thunk before
being returned.

A Case expression is evaluated by first recursively evaluating the expression
being “cased over” to HNF. In a well-typed program, this must be a VCapp
of the same type as the case patterns. If the VCapp constructor matches one
of the patterns, the pattern variables are bound to the corresponding VCapp
operands (represented by heap pointers), and the corresponding right-hand
side is evaluated in the resulting environment. If no pattern matches, the
evaluation fails, indicated by returning mzero.

To evaluate a primitive application, the arguments are evaluated to HNF in
left-to-right order and the resulting values are passed to the auxiliary function
doPrimapp (Figure 7), which defines the behavior of each primitive operator.

Finally, to interpret a whole-program expression, we can define

interp :: Exp -> Maybe (Value,Heap)
interp e = run (eval mempty e)

which executes the monadic computation produced by evaluating the program
in an empty initial environment. If we are only interested in the head con-
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eval :: Env -> Exp -> M Value
eval env (Int i) = return (VInt i)
eval env (Abs x b) = return (VAbs env x b)
eval env (Capp c es) =
do ps <- mapM (const fresh) es
zipWithM_ store ps (map (HThunk env) es)
return (VCapp c ps)
eval env (App e0 el) =
do VAbs env’ x b <- eval env e0
pl <- fresh
store pl (HThunk env el)
eval (mset env’ (x,pl)) b
eval env (Letrec xes e) =
do let (xs,es) = unzip xes
ps <- mapM (const fresh) xes
let env’ = foldl mset env (zip xs ps)
zipWithM_ store ps (map (HThunk env’) es)
eval env’ e
eval env (Var x) =
do let p = mget env x
h <- fetch p
case h of
HThunk env’ e’ ->
do store p HBlackhole
v’ <- eval env’ e’
store p (HValue v’)
return v’
HValue v -> return v
HBlackhole —-> mzero
eval env (Case e pes) =
do VCapp cO ps <- eval env e
let plookup [] = mzero
plookup (((c,xs),b):pes) | ¢ == cO = return (xs,b)
| otherwise = plookup pes

(xs,b) <- plookup pes
let env’ = foldl mset env (zip xs ps)
eval env’ b
eval env (Primapp p el e2) =
do vl <- eval env el
v2 <- eval env e2
return (doPrimapp p vl v2)

Fig. 6. Call-by-need eval function.
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doPrimapp :: Prim -> Value -> Value -> Value
doPrimapp "eq" (VInt il1) (VInt i2) | il == i2 VCapp "True" []
| otherwise = VCapp "False" []
doPrimapp "add" (VInt i) (VInt j) = VInt (i+j)
doPrimapp "xor" (VCapp "True" []) (VCapp "True" []) =
VCapp "False" []
doPrimapp "xor" (VCapp "True" []) (VCapp "False" []) =
VCapp "True" []

Fig. 7. Auxiliary doPrimapp function.

structor of the result value, we can project out the Value component and
ignore the Heap.

3 Non-determinism, Logic Variables, and Narrowing

We now revise and extend our interpreter to incorporate the key logic program-
ming features of Curry. To do this, we must record multiple possible results for
evaluation, by redefining the monadic type A of answers. (Changing A implic-
itly also changes M, although the code defining M’s functions doesn’t change.)
By choosing this monad appropriately, we can add non-deterministic features
to our existing interpreter without making any changes to the determinis-
tic fragment; the hidden “plumbing” of the bind operation will take care of
threading the multiple alternatives. Deterministic choices are injected into the
monad using return; non-deterministic choice will be represented by mplus;
as before, failure of (one) non-deterministic alternative will be represented by
mzero. The definition of A is addressed in Section 3.2.

3.1 Logic Variables and Narrowing

First, we show how to add logic variables and narrowing to the language and
interpreter. This requires surprisingly little additional machinery, as shown in
Figure 8. We add a new expression form, Logic, to declare scoped logic vari-
ables; the Curry expression “e where x free” is encoded as (Logic "x" e).
We add a corresponding HNF VLogic HPtr, which is essentially a reference
into the heap. Logic declarations are evaluated by allocating a fresh heap
location p, initially set to contain VLogic p, binding the logic variable to this
location, and executing the body in the resulting environment.

We now must consider how to handle VLogic values within the eval func-
tion. The most important change is to Case; if the “cased-over” expres-
sion is bound to a VLogic value, the evaluator performs narrowing. (We
temporarily assume all cases are “flexible.”) This is done by considering
each provided case arm in turn. For a pattern with constructor ¢ and ar-
gument parameters xi,...,x,, the evaluator allocates n fresh logic variable
references py, ..., p,, overwrites the cased-over logic variable in the heap with
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lift :: Ma -> M a
lift M m) = M (\h -> forestLift (m h))

data Exp = Logic Var Exp | ... as before ...
data Value = VLogic HPtr | ... as before ...

eval env (Var x) =
lift $ ... as before ...

eval env (Logic x e) =
do p <- alloclogic
eval (mset env (x,p)) e

eval env (Case e pes) =
do v <- eval env e
case v of
VCapp cO ps -> ... as before ..
VLogic p0O —>
foldr mplus mzero (map f pes)
where
f ((c,xs),e’) =
do ps <- mapM (const allocLogic) xs
store p0 (HValue (VCapp c ps))
let env’ = foldl mset env (zip xs ps)
eval env’ e’

eval env (Primapp p el e2) =
do vl <- eval env el
v2 <- eval env e2
checkGround v1
checkGround v2
return (doPrimapp p vl v2)

allocLogic :: M HPtr

alloclogic = do p <- fresh
store p (HValue (VLogic p))
return p

checkGround :: Value > M ()
checkGround (VLogic _) = mzero
checkGround _ = return ()

Fig. 8. Evaluating logic features.
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(VCapp ¢ [p1,--.,pn]), extends the environment with bindings of z; to p;,
and recursively evaluates the corresponding case arm in that environment.
All the resulting monadic computations are combined using mplus; this is the
only place where mplus is used in the interpreter, and hence the sole source
of non-determinism. Note that other possible non-deterministic operators can
be encoded using Case; e.g., McCarthy’s “amb” operator [13] (usually called
“or” in Curry) can be encoded as

amb e; ez = Logic "dummy" (Case (Var "dummy")
[(("Ldummy", [1), e1),
(("Rdummy", [1), e2)1)

Adding non-determinism makes the sharing semantics of call-by-need evalua-
tion observable: For example, consider these two definitions:

coinl = Letrec [("c",amb (Int 0) (Int 1))]
(Primapp "add" (Var "c") (Var "c"))
coin2 = Primapp "add" (amb (Int 0) (Int 1))
(amb (Int 0) (Int 1))

Here coinl evaluates to {0,2}, whereas coin2 evaluates to {0,1,2}.

We also need to make another small change to the eval code (adding calls
to checkGround) to guard against the appearance of a VLogic value in an
operand position of a Primapp; in this case, eval will return mzero. Note that
because of this possibility for failure, the left-to-right evaluation semantics of
Primapps can be observed. For example, the evaluation of

Logic "x"
(Primapp "xor"
(Var lan)

(Case (Var "x") [(("True",[]), Capp "False" [1)1))

fails, but would succeed (with True) if the order of arguments to and were
reversed. This characteristic may seem rather undesirable; we consider alter-
natives in Section 4.

Another important component of Curry is the strict equational unification
operator (=:=) used to specify constraints. We can almost capture the behav-
ior of this operator using Case. For example, Figure 9 shows two type-specific
instances of the operator. Similar instances can be generated statically for
all uniform data types [14, Ch. 10.1] involving just constructors; a separate
mechanism is still needed to handle primitive types and non-uniform data
types. Admittedly, these encodings are not very efficient, because unifying
a logic variable with a term creates a copy of the term. Moreover, applying
a recursive operator such as eqBoolList to two logic variables always pro-
duces an infinite set of answers; this is semantically acceptable, provided that
we handle non-determinism fairly (Section 3.2), but very wasteful. A more
efficient approach would be to treat =:= as a new kind of core language ex-
pression, whose implementation could test whether a value is a logic variable
and could perform direct unification of two variables. However, adding sup-
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eqBool e ey =
Case ¢;
[(("True",[]), Case ey [(("True",[]), Capp "Success" [1)]),
(("False",[]), Case ey [(("False",[]), Capp "Success" [1)1)]

eqBoollist e ey =
Letrec [("ebl",
Abs "el" (Abs "e2"
(Case (Var "el")
[CennNilm, 1),
Case (Var "e2" [(("Nil",[D),
Capp "Success" [1)1)),
(("Comns", ["h1","t1"]),
Case (Var "e2")
[(("Cons", ["h2","t2"]),
Case (egBool (Var "h1") (Var "h2"))
[(("Success",[]),
App (App (Var "ebl" (Var "t1"))
(Var "t2")))1)1)1H N1
(App (App (Var "ebl") ey) e3)

Fig. 9. Instances of =:= for booleans and lists of booleans. Each operator returns
Success if the unification succeeds, and fails otherwise.

port for these features would noticeably complicate the interpreter (e.g., by
introducing chains of pointers in the heap), so it is noteworthy that they are
not essential for obtaining the desired semantics in most cases.

3.2 Monads for Non-determinism

It remains to define type A in such a way that it can record multiple non-
deterministic answers. The standard choice of monad for this purpose is
lists [19]. In this scheme, non-deterministic choice of a value is represented
by a list of values; returna produces the singleton list [a]; mplus is con-
catenation (++); m >>= k applies k to each element in m and concatenates
the resulting lists of elements; and mzero is the empty list []. However, if
we want to actually execute our interpreter and inspect the answers, the list
monad has a significant problem: its mplus operation does not model fair
non-deterministic choice. Essentially this is because evaluating m; ++ mo
forces evaluation of the full spine of my, so L ‘mplus® m = L. If the left
alternative leads to an infinite computation, the right alternative will never
be evaluated at all. For example, evaluating

Letrec ["f",amb (Var "f") (Int 1)] (Var "f")

should produce the answer 1 (infinitely many times). However, if we represent
answers by lists, our interpreter will compute (roughly speaking)

11
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(eval (Var "f")) ‘mplus‘ (return (VInt 1))
= (eval (Var "f")) ++ [VInt 1]

If we attempt to inspect this answer, we immediately cause a recursive eval-
uation of f, which produces the same thing; we never see any part of the
answer. In effect, using this monad amounts to performing depth-first search
of the tree of non-deterministic choices, which is incomplete with respect to
the intuitively expected semantics.

To avoid this problem, we adopt the idea of Seres, Spivey, and Hoare [17],
and represent non-determinism by a lazy forest of trees of values (Figure 10).
We set type A a = Forest a. As before, we represent choices as a list, with
mplus implemented as (++), but now the lists are of trees of values. To obtain
the values, we can traverse the trees using any ordering we like; in particular,
we can use breadth-first rather than depth-first traversal:

interp :: Exp -> [(Value,Heap)]
interp = bfs (run (eval mempty e))

This approach relies fundamentally on the laziness of the forest structure.
Non-trivial tree structures are built using the forestLift operator, which
converts an arbitrary forest into a singleton one by making all the trees into
branches of a single new tree. Applying forestLift to a value v before
concatenating it into the forest with mplus will delay the point at which v is
encountered in a breadth-first traversal, and hence allow the other argument
of mplus to be explored first. For the example above, the forest answer will
have the form

(forestLift (eval (Var "f"))) ‘mplus‘ (return (VInt 1))
= (Forest [Fork (eval (Var "f£"))]) ‘mplus®

(Forest [Leaf (VInt 1)])

Forest ([Fork (eval (Var "f"))] ++ [Leaf (VInt 1)])
Forest [Fork (eval (Var "f")), Leaf (VInt 1)]

Applying bfs to this answer will produce VInt 1 (the head of its infinite
result) before it forces the recursive evaluation of f.

To make use of forestLift, we need to add a new 1ift operator to M,
defined in Figure 8. We have some flexibility about where to place calls to 1ift
in our interpreter code. For fairness, we must make sure that there is a 1ift
in every infinite cycle of computations made by the interpreter. The simplest
way to guarantee this is to apply 1ift on each call to eval. If we do this,
there is a clear parallel between the evaluation of the answer structure and the
behavior of a small-step semantics. However, more parsimonious placement of
lifts will also work; for example, since every cyclic computation must involve
a heap reference, it suffices to 1ift only the evaluation of Var expressions, as
shown in Figure 8.
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newtype Forest a = Forest [Tree al
data Tree a = Leaf a | Fork (Forest a)
instance Monad Forest where
m >>= k = forestjoin (forestmap k m)
return a = Forest [Leaf a]
instance MonadPlus Forest where
mzero = Forest []
(Forest m1) ‘mplus‘ (Forest m2) = Forest (ml ++ m2)

forestlLift :: Forest a -> Forest a
forestLift f = Forest [Fork f]

forestjoin :: Forest (Forest a) -> Forest a
forestjoin (Forest ts) = Forest (concat (map join’ ts))
where join’ :: Tree (Forest a) -> [Tree a]

join’ (Leaf (Forest ts)) = ts
join’ (Fork xff) = [Fork (forestjoin xff)]

treemap :: (a -> b) -> Tree a -> Tree b
treemap f (Leaf x) = Leaf (f x)
treemap f (Fork xf) = Fork (forestmap f xf)

forestmap :: (a -> b) -> Forest a -> Forest b
forestmap f (Forest ts) = Forest (map (treemap f) ts)

bfs :: Forest a -> [a]

bfs (Forest ts) = concat (bfs’ ts)

where bfs’ :: [Tree a] -> [[all
bfs’ ts = combine (map levels ts)
levels :: Tree a -> [[a]]

levels (Leaf x) = [[x]]

levels (Fork (Forest xf)) = []:bfs’ xf
combine :: [[[a]l]l] -> [[al]

combine = foldr merge []

merge :: [[al]l -> [[a]l] -> [[a]]

merge (x:xs) (y:ys) = (x ++ y):(merge xs ys)
merge xs [] = xs

merge [] ys = ys

Fig. 10. Monad of forests and useful traversal functions (adapted from [17]).

4 Residuation

In real Curry, appearance of a logic variable in a rigid position causes eval-
uation to residuate, i.e., suspend until the logic variable is instantiated (to a
constructor-rooted expression). Residuation only makes sense if there is the
possibility of concurrent computation—otherwise, the suspended computation
can never hope to be restarted. The only plausible place to add concurrency to
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type Flex = Bool

type Concurrent = Bool

type Prim = (String,Concurrent)

data Exp = Case Flex Exp [(Pattern,Exp)] | ... as before ...

eval env (Case flex e pes) =
do v <- eval env e
case v of
VCapp ¢ ps -> ... as before ...
VLogic pO | flex ->
. as before ...
store p0
yield $
. as before ...
VLlogic _ | otherwise -> mzero

eval env (Primapp (p,concurrent) el e2) =
do (v1,v2) <-
if concurrent then
conc (eval env el) (eval env e2)

else do vl <- eval env el
v2 <- eval env e2
return (v1,v2)

. as before ...

doPrimapp "and" (VCapp "Success" []) (VCapp "Success" []) =
VCapp "Success" []

Fig. 11. Interpreter changes to support residuation.

our existing core language is for evaluation of arguments to primitives. We use
an interleavings semantics for concurrency; the result is semantically simple
though not practically efficient (since the number of interleavings can easily
grow exponentially).

We can add residuation support to our core language by making only minor
changes to our interpreter, as shown in Figure 11. We extend the core language
syntax by adding a boolean flag to each primitive operator indicating whether
its arguments are to be evaluated concurrently. The most obvious candidate
for this evaluation mode is the parallel and operator normally used in Curry
to connect pairs of constraints. We also add a flag on Case expressions to
distinguish flexible and rigid cases.

The evaluator relies on significant changes to the underlying monad M,
which is modified to describe concurrent computations using resumptions [16,
Ch. 12], a standard method from denotational semantics. Each monadic com-
putation is now modeled as a stream of partial computations. The conc
operator takes two such streams and produces a computation that (non-
deterministically) realizes all possible interleavings of the streams. The atom-
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icity of interleaving is controlled by uses of yield; placing a yield around a
computation indicates a possible interleaving point.

With this monadic support in place, our approach to residuation is simple,
and requires very few changes in the eval function. Attempts to perform
a rigid case over an unresolved logic variable simply fail (just as in other
strict contexts). However, arguments to concurrent primitives are evaluated
using the conc operator, so that if there are any possible evaluation sequences
that resolve the logic variable before it is cased over, those sequences will
be tried (along with potentially many other sequences that lead to failure).
To make this approach work, we must permit enough interleaving that all
possible causal interactions between the two argument evaluation sequences
are captured. A brute-force approach would be to yield before each recursive
call to eval. However, since logic variable heap locations can only be updated
by the store operation in the interpreter code for flexible Case expressions,
it suffices to yield following that store.*

To illustrate how interleaving works, we can define canonical code se-
quences for reading and writing logic variables:

wr  k = Case True (Var z) [(("True",[1), k)]
rd z k = Case False (Var z) [(("True",[1), k)]

Here wr = k writes True into logic variable x (assumed to be not already set),
and then continues by evaluating expression k. Conversely, rd z k attempts
to read the contents of logic variable x (assumed to contain True); if this is
successful, it continues by evaluating k; otherwise, it fails. Now consider the
expression
Logic "x" (Logic "y" (Primapp ("and",True)
(rd "x" (wr "y" (Capp "Success" [1)))
(wr "x" (rd "y" (Capp "Success" [1)))))

The application of the concurrent primitive and causes evaluation of the two
argument expressions to be interleaved. Each wr induces a yield immediately
following the store into the variable, so there are three possible interleavings,
shown in the three columns below. The first and third of these fail (at the
point marked *); only the second succeeds.

execution left-arg right-arg left-arg  right-arg left-arg  right-arg
order
1 rd "x" * wr "x" wr "x"
2 wr "y" rd "x" rd "y" *
3 wr "x" wr "y" rd "x"
4 rd "y" rd "y" wr "y"

4 Tt is also essential to use black-holing as described in Section 2, thus providing a (different)
kind of atomicity around thunk evaluations; otherwise some interleavings might cause a
thunk heap location to be updated twice with different values.
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Note that it is perfectly possible to label ordinary primitives like add or xor as
concurrent. This makes the result independent of argument evaluation order,
thus removing one of the drawbacks we noted to the narrowing semantics of
Section 3.1. In fact, it is hard to see that anything less than concurrency can
achieve order-independence. In other words, making primitive applications
independent of argument order seems to be no easier than adding residuation.

It remains to describe the implementation of resumptions, which is en-
tirely within monad M, revised as shown in Figure 12. Each computation now
returns one of two States: either it is Done, producing a value, or it is still
Running, carrying a new M computation describing the remainder of the (orig-
inal) computation. In either case, the computation also returns an updated
heap. Simple computations (such as primitive fresh, store and fetch oper-
ations) just return Done states. Computations returning Running states are
generated by the yield operator. The conc operator non-deterministically
tries both orders for evaluating its arguments at each stage of partial compu-
tation. As before, support for non-determinism is given by monad A (which
does not change). A proof that this version of M actually obeys the monad
laws is given by Papaspyrou [15].

5 Conclusion and Future Work

We have presented a simple executable semantics for the core of Curry. The
full code for the three interpreter versions described here is available at
http://www.cs.pdx.edu/ apt/curry-monads.

The structure of our semantics sheds some light on how the basic com-
ponents of the language interact. In particular, we can see that the addition
of non-determinism, logic variables and narrowing can be accomplished just
by making a suitable shift in interpretation monad. We could emphasize
this modularity further by presenting the relevant monads as compositions of
monad transformers [12]. This would extend existing work by Labra Gayo, et
al. [9], in which transformers are used to structure an interpreter for a simple
logic programming language.

A number of important Curry features are still missing from our account.
We have already mentioned the need for a more efficient implementation of the
=:= operator, using direct variable-variable unification. Curry also includes
an encapsulated search facility, which reflects multiple results from a nested
non-deterministic computation back into the language as a list; it is unclear
how to achieve this in our framework.

While we think the semantics given in this paper is attractive in its own
right, it would obviously be useful to give a formal characterization of its
relationship with the various existing semantics for Curry; we have not yet
attempted this. As additional future work, we plan to pursue the systematic
transformation of this semantics into a small-step form suitable as the basis
for realistic interpreters and compilers.
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data State a = Done a
| Running (M a)
newtype M a = M (Heap -> A (State a,Heap))
instance Monad M where
(Mm1) >=k =M (\h ->
do (s,h’) <-ml h
case s of
Done a’ -> let M m2 = k a’ in m2 h’
Running m’ -> return (Running (m’ >>= k),h’))
return x = M (\h -> return (Done x, h))
instance MonadPlus M where
mzero = M (\h -> mzero)
M m1) ‘mplus® (M m2) =M (\bh -> (m1 h ‘mplus‘ m2 h))
fresh :: M HPtr
fresh = M (\h -> let (v,h’) = hfresh h in return (Done v,h’))
store, fetch ... modified similarly ...
yield :: Ma -> M a
yield m = M (\h -> return (Running m,h))
run :: M a -> A (a,Heap)
run = run’ hempty
where
run’ :: Heap -> M a -> A (a, Heap)
run’ h (M m) =
do (s,h’) <-mh
case s of
Done a -> return (a, h’)
Running m’ -> run’ h’ m’
conc :: Ma->Mb->M (a,b)
conc ml m2 = (m1 ‘thn‘ m2) ‘mplus‘ (1iftM swap (m2 ‘thn‘ ml))
where thn :: Ma ->Mb -> M (a,b)
(M m1’) ‘thn‘ m2 = M (\h —>
do (s,h’) <- m1’ h
case s of
Done a ->
return (Running (do b <- m2
return (a,b)),h’)
Running m’ -> let M m’’ = conc m’ m2 in m’’ h’)
swap :: (a,b) -> (b,a)
swap (a,b) = (b,a)

Fig. 12. Monad changes to supporting residuation.
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